怎么使用嵌套词典计算百分比
本教程将介绍如何使用嵌套词典计算百分比的处理方法,这篇教程是从别的地方看到的,然后加了一些国外程序员的疑问与解答,希望能对你有所帮助,好了,下面开始学习吧。
问题描述
我纠结于怎么使用嵌套词典计算百分比。我有一个old_dict = {'X': {'a': 0.69, 'b': 0.31}, 'Y': {'a': 0.96, 'c': 0.04}}
定义的dictionay
,我知道X
和Y
的百分比在表中:
input= {"name":['X','Y'],"percentage":[0.9,0.1]}
table = pd.DataFrame(input)
OUTPUT:
name percentage
0X0.9
1Y0.1
但我希望用X和Y的百分比分别乘以a,b,c。即X*a = 0.9*0.69
、X*b = 0.9*0.31
、Y*a = 0.1*0.96
、Y*c = 0.1*0.04
...这样我就可以找到a,b和c的混合百分比,最终得到了一个新的词典new_dict = {'a': 0.717, 'b': 0.279 ,'c': 0.004}
。
我正在努力解决怎么突破嵌套的字典,以及怎么将X和Y与表中的相应值链接起来。有谁可以帮我?谢谢!
推荐答案
您可以对第一个字典使用DataFrame,对第二个字典使用Series,并执行对齐乘法,然后sum
:
old_dict = {'X': {'a': 0.69, 'b': 0.31}, 'Y': {'a': 0.96, 'c': 0.04}}
df = pd.DataFrame(old_dict)
inpt = {"name":['X','Y'],"percentage":[0.9,0.1]}
table = pd.DataFrame(inpt)
# convert table to series:
ser = table.set_index('name')['percentage']
# alternative build directly a Series:
# ser = pd.Series(dict(zip(*inpt.values())))
# compute expected values:
out = (df*ser).sum(axis=1).to_dict()
输出:{'a': 0.717, 'b': 0.279, 'c': 0.004}
好了关于怎么使用嵌套词典计算百分比的教程就到这里就结束了,希望趣模板源码网找到的这篇技术文章能帮助到大家,更多技术教程可以在站内搜索。